Безопасность программного обеспечения компьютерных систем

       

Методы защиты программ от несанкционированных изменений


Решение проблемы обеспечения целостности и достоверности электронных данных включает в себя решение, по крайней мере, трех основных взаимосвязанных задач: подтверждения их авторства и подлинности, а также контроль целостности данных. Решение этих трех задач в случае защиты программного обеспечения вытекает из необходимости защищать программы от следующих злоумышленных действий:

  • РПС может быть внедрены в авторскую программу или эта программа может быть полностью заменена на программу-носитель РПС;

  • могут быть изменены характеристики (атрибуты) программы;

    злоумышленник может выдать себя за настоящего владельца программы;

    законный владелец программы может отказаться от факта правообладания ею.

Наиболее эффективными методами защиты от подобных злоумышленных действий предоставляют криптографические методы защиты. Это обусловлено тем, что хорошо известные способы контроля целостности программ, основанные на контрольной сумме, продольном контроле и контроле на четность, как правило, представляют собой довольно простые способы защиты от внесения изменений в код программ. Так как область значений, например, контрольной суммы сильно ограничена, а значения функции контроля на четность вообще представляются одним-двумя битами, то для опытного нарушителя не составляет труда найти следующую коллизию: f(k1)=f(k2), где k1 - код программы без внесенной нарушителем закладки, а k2 - с внесенной программным закладкой и f - функция контро-ля. В этом случае значения функции для разных аргументов совпадают при тестировании и, следовательно, закладка обнаружена не будет.

Для установления подлинности (неизменности) программ необходимо использовать более сложные методы, такие как аутентификация кода программ, с использованием криптографических способов, которые обнаруживают следы, остающиеся после внесения преднамеренных искажений.

В первом случае аутентифицируемой программе ставится в соответствие некоторый аутентификатор, который получен при помощи стойкой криптографической функции.


Такой функцией может быть криптографически стойкая хэш-функция (например, функция ГОСТ Р 34.11-94) или функция электронной цифровой подписи (например, функция ГОСТ Р 34.10-94). И в том, и в другом случае аргументами функции может быть не только код аутентифицируемой программы, но и время и дата аутентификации, идентификатор программиста и/или предприятия - разработчика ПО, какой-либо случайный параметр и т.п. Может использоваться также любой симметричный шифр (например, DES или ГОСТ 28147-89) в режиме генерации имитовставки. Однако, это требует наличия секретного ключа при верификации программ на целостность, что бывает не всегда удобно и безопасно. В то время как при использовании метода цифровой подписи при верификации необходимо иметь только некоторую общедоступную информацию, в данном случае открытый ключ подписи. То есть контроль целостности ПО может осуществить любое заинтересованное лицо, имеющее доступ к открытым ключам используемой схемы цифровой подписи.

Можно еще более усложнить действия злоумышленника по нарушению целостности целевых программ, используя схемы подписи с верификацией по запросу [,]. В этом случае тестирование программ по ассоциированным с ними аутентификаторам можно осуществить только в присутствии лица, сгенерировавшего эту подпись, то есть в присутствии разработчика программ или представителей предприятия-изготовителя программного обеспечения. В этом случае, если даже злоумышленник и получил для данной программы некий аутентификатор, то ее обладатель может убедиться в достоверности программы только в присутствии специалистов-разработчиков, которые немедленно обнаружат нарушения целостности кода программы и (или) его подлинности.


Содержание раздела